
ORIGINAL ARTICLE

Detection of multitask mental workload using gamma band power
features

Onur Erdem Korkmaz1,2 · Sevde Gül Korkmaz1,3 · Onder Aydemir3

Received: 8 February 2023 / Accepted: 21 February 2024
© The Author(s) 2024

Abstract
Cognitive fatigue occurs in various situations and is an essential condition to detect. In this study, how single and multi-
tasking tests affect cognitive workload was examined, and multi-tasking was detected using electroencephalography (EEG)
signals. In the cognitive workload paradigm, single-task tests with blocks 1 and 2 and multi-tasking tests with block 3 were
created. EEG signals obtained from these blocks were treated as different frequency bands and lengths, and binary clas-
sification was performed. Two binary classifications were made: block 1–block 3 and block 2–block 3. According to the
results, the highest classification accuracy for block 1–block 3 was obtained as 97.11% using the gamma frequency band and
5-s EEG length. For block 2–block 3, the highest classification accuracy was obtained as 90.88% using the gamma
frequency band and 5-s EEG length. As a result, this study distinguished multi-tasking and single task with high classifi-
cation accuracy. The developed model can be used to detect attention deficit and inability to focus. In addressing the
prevalent challenges of distinguishing cognitive fatigue in single—task versus multitasking scenarios, our study offers a new
method, which achieve a remarkable accuracy rate, thereby illuminating a new path in the research of cognitive fatigue.
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1 Introduction

The brain is a complex organ that controls thought, mem-
ory, emotion, touch, motor skills, vision, breathing, tem-
perature, hunger, and every process that regulates our body.
Together with the spinal cord, it forms the central nervous
system [1]. Physiologically, the brain acts as central control
over the body's other organs. It treats as a control mecha-
nism over the rest of the body by making muscle activity
patterns and releasing chemicals called hormones. This
central control enables rapid and coordinate responses to
changes in the environment. How individual brain cells
work is now well understood, but how millions of brain

cells cooperate as a group remains to be deciphered [2].
Recent models in modern neuroscience treat the brain as a
biological computer. The mechanism is very different from
an electronic computer but very similar to computers in that
it receives and stores information from the surrounding
world, performs many parallel operations simultaneously,
and gets fatigue while doing these operations [3, 4].

Fatigue is a very diverse issue with human physiology,
emotional, behavioral, and cognitive components. It is a
concept that includes various definitions, and it is not
always physiological fatigue originating from the muscular
system. One of the types of fatigue that affects daily life
performance is cognitive fatigue which is defined as a
psycho-biological condition that occurs as a result of pro-
longed movements.

Cognitive fatigue shows its effects in many areas of daily
life. When the literature is examined, it has been stated that
cognitive fatigue increases the rate of making mistakes in
any work situation. It is a symptom of neurological disor-
ders frequently encountered in adults [5, 6]. In addition to
these, cognitive fatigue has been accepted as an essential
determinant of performance in the field of sports and
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exercise [7, 8]. Although techniques such as electrodermal
activity, magnetoencephalography, electrocardiography, and
functional magnetic resonance imaging are used in the lit-
erature to detect cognitive fatigue, EEG is preferred in terms
of revealing the neural activity, which is considered the
source point for the detection of cognitive fatigue.

In recent studies Dehais et al. [9] measured mental fati-
gue and the electrophysiological effects of mental overload
using a 32-channel EEG system in one of the studies on the
detection of cognitive fatigue. Two experiments were con-
ducted with the simulator that simulates the actual flight
situation, and they revealed that alpha, theta, and beta band
powers affect the detection of cognitive fatigue. They could
distinguish mental overload and mental fatigue with a
classification accuracy (CA) of 89.1% [9]. In another study,
Trejo et al. experimented with 16 people with EEG signals
they received over 30 channels. A 3-state fatigue model was
developed using the Bayesian classification algorithm with
the obtained EEG signals [10]. In another study in the lit-
erature, Sun et al. performed a 20-min attention test on 26
people. With the algorithm used in this study, an CA of
81.5% was obtained in the classification of fatigue and rest
through cross-validation [11]. In another study, Papakostas
conducted a 76-session cognitive experiment with 19 male
and female participants using the Wisconsin card sorting
test and a different version of this test. Resting cognitive
workload classification was performed using the support
vector machine algorithm with the EEG signals recorded
during the experiment, and an CA of 67% was obtained
[12]. Similar to the studies provided above, the classifica-
tion accuracies obtained in our study are presented in
Table 2.

There are also studies investigating the effects of dif-
ferent tests on detecting cognitive fatigue. Chai et al.
compared the performance of three different tests in
detecting cognitive workload using EEG signals. For this
purpose, the power spectral density, power spectral entropy,
wavelet transform, autoregressive features, AX-continuous
performance test, psychomotor alertness test, and Stroop
Test were compared with the Bayesian classification algo-
rithm. According to the autoregressive feature method
results, the highest CA of 75.95% was obtained in the AX-
continuous performance test, 75.23% in the psychomotor
alertness test, and 76.02% in the Stroop Test [13]. In their
study, Peng et al. investigated the effect of mental fatigue
caused by different tasks using functional near-infrared
spectroscopy. In addition to distinguishing fatigue from
non-fatigue, early signs of fatigue have also been studied to
provide an early warning of fatigue. For this purpose, 36
participants were randomly divided into three groups, and
one of the psychomotor alertness tests, cognitive study, or
simulated driving test was performed with each group. The
tests were carried out at three different times of the day,

morning, noon, and evening. Before cognitive tests (psy-
chomotor alertness test, cognitive study, or simulated driv-
ing test), n-back (n=1) and multidimensional fatigue
inventory (Multidimensional Fatigue Inventory, MFI-20)
tests were performed. As a result of these tests, those with
an MFI-20 score less than 2.57 were not identified as
cognitively tired, while those with an MFI-20 score above
2.57 were determined as cognitively tired. In addition,
according to MFI-20 and n-back dual evaluation, those with
a score greater than 3 were determined as severe fatigue,
and those with a dual evaluation score of less than 3 were
determined as moderate fatigue. The results both showed
the functional connection between brain regions during
cognitive fatigue and were discussed in classification
accuracy. Accordingly, 85.4% CA was obtained in the
binary classification in which fatigue and fatigue were
compared, and five-fold cross-validation was performed. In
the classification process where mild and severe fatigue
were compared, an CA of 82.8% was obtained [14]. In
another study in the literature [15], Lim et al. used an open-
access EEG dataset for multitasking mental workload
activity caused by a single-session simultaneous capacity
experiment with 48 participants. In this study, which is
closest in content to our study, the participants were asked
to perform the Vienna test system's simultaneous capacity
(SIMKAP) test module [16]. SIMKAP is a commercial
psychological test created by Schuhfried GmbH to assess an
individual's tolerance for multitasking and stress. While the
test was designed as an assessment tool to screen person-
nel's multitasking abilities in multitasking-heavy occupa-
tions such as air traffic management, it has also been applied
in various research scenarios involving multitasking [17–
19]. The SIMKAP multitasking test is a test that requires
participants to highlight the same items by comparing two
separate panes while answering auditory questions, which
can be arithmetic, comparison, or data searching. When the
results were examined, low, moderate, and high fatigue
levels were distinguished, with a mean CA of 69%. Studies
have generally investigated the effect of different cognitive
tests on creating workload. In the study of Lim et al., they
classified the beginner, intermediate and advanced cognitive
workload groups with the multitasking test they created.
However, this study did not investigate how single and
multitasking tests affect cognitive workload [15]. The study
of Karim et al. delved into the intricate nature of cognitive
fatigue (CF) and its ramifications on day-to-day perfor-
mance. They highlighted that CF results in a decline in
cognitive system performance, leading to exhaustion. For
the purpose of their study, an experimental setup was
established to artificially induce cognitive fatigue among
subjects. During this process, EEG signals were meticu-
lously collected from the participants. The primary objec-
tive of the study was to ascertain the presence or absence of
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cognitive fatigue. Impressively, based on the EEG readings,
the proposed method managed to detect cognitive fatigue in
the subjects with a commendable accuracy of 88.17% [20].
In the study, Gao et al. underscore the utility of EEG signals
as an effective method for fatigue detection. This approach
intuitively captures the mental states of drivers. Existing
studies, however, have yet to thoroughly explore multi-di-
mensional features of EEG signals, which presents chal-
lenges given their inherent instability and complexity.
Additionally, a prevailing trend in the current literature is
the treatment of deep learning models primarily as classi-
fiers, often overlooking the distinctive features of various
subjects captured by the model. To address these gaps, the
authors introduced a novel multi-dimensional feature fusion
network that integrates the Gaussian Time Domain Network
and the Pure Convolutional Spatial Frequency Domain
Network. The proposed methodology excelled in discerning
between alert and fatigue states, demonstrating accuracy rates
of 85.16% and 81.48% on custom-built and SEED-VIG
datasets, respectively. This performance surpassed existing
benchmarks.Moreover, the study delved into the significance
of each brain region in fatigue detection using brain topology
maps and examined the variations across different frequency
bands for diverse subjects in both alert and fatigued states via
heat maps. This comprehensive approach offers fresh per-
spectives in brain fatigue research and holds promise for
further advancements in the domain [21].

In line with the previous studies above mentioned, in this
study, we contribute to the literature by detection multitask
cognitive workload with a novel pattern recognition strat-
egy, which extracts meaningful features from the EEG
signals using only 5-s EEG length of the gamma frequency
band. In the cognitive workload determination task created
for this purpose, the participants were first asked to answer
the questions involving mathematical operations in the first
block. Then the same experimental procedure was repeated
with similar questions in the second block. In the third
block, where both the mathematical operations and the news
recording were played, the participants were asked to listen
to the news recordings played in the background while
answering the mathematical questions. At the end of the
experiment, the participant was reminded that questions
would be asked from the news recording, and they were
asked to listen carefully to the news recording. Thus, the
difference in cognitive workload between the blocks was
classified by recording EEG data in the single task block 1
and block 2, where only mathematical operations were
performed. Mathematical operations were performed in
multitasking block 3, and the news recording was played.
As a result, this study investigated the effect of single tasks
and multitasking on cognitive workload. To the best of our
knowledge, this study is the first attempt to compare single
and multitask. Single and multi-tasking EEG signals were

distinguished using the gamma frequency band and EEG
length of 5 s, with the highest accuracy of 97.11%. In
essence, our work pioneers a fresh perspective on under-
standing cognitive fatigue, bridging the gap between single-
task and multitasking implications. By providing a robust
methodological approach coupled with high accuracy, we
believe to set a new benchmark in cognitive fatigue
research. Moreover, the proposed method can be able to
reveal the multitask cognitive fatigue-based reason of poor
performance of EEG based applications, which required
attention and focusing ability such as brain-computer
interface, decision making and problem solving. From these
perspectives, it is thought that the proposed method will
make a significant contribution to the literature, as this issue
has not been studied directly in the literature.

2 Materials and methods

The block diagram of the transactions carried out within the
scope of this study is shown in Fig. 1. Firstly, the paradigm
that enables the detection of cognitive workload was shown
to the participant on the LED screen. The participant's
brain's electrical response to stimuli throughout the exper-
iment is recorded. In the preprocessing phase following the
EEG recording, we meticulously filter out high-frequency
components that are extraneous to the inherent EEG signals,
and rigorously eliminate any noise. This careful prepro-
cessing not only refines the signal quality but also signifi-
cantly enhances the success rate of subsequent
classifications. EEG data are then divided into blocks with
rest and cognitive workload. The resulting blocks are
divided into sub-blocks of 1 s, 3 s, and 5 s. The classifi-
cation process is performed by extracting the features from
each sub-data block obtained.

2.1 Paradigm

The paradigm prepared to make a cognitive workload
consists of 4 parts. First, the participant rested for 5 min by
looking at the '?’ symbol on the computer screen, which
was named as block 0. Then, the cognitive workload blocks,
in which the participant solves problems mentally were
started. In the first of these blocks, the participant mentally
solved the questions displayed on the computer screen for 5
min. Afterwards, a 1-min rest break was given. At the end
of the rest, the second block was utilized. In the second
block, the participant mentally solved the questions on the
screen in front of him for 5 min, similar to block 1. After the
second block, a 1-min rest break was given. Finally, in the
third block, the participant simultaneously listened to the
news recordings playing in the background while mentally
solving the questions that appeared on the screen in front of
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him for 5 min. Before the experiment started, the participant
was reminded that while solving the questions in the last
block, he had to listen to the news recording, and he was
told that at the end of the experiment, questions about the
news recordings would be asked. Thus, the participants
simultaneously listened to the news recording while solving
the questions in the third block. At the end of the experi-
ment, questions about the news were asked, and the answers
were noted. Experiment blocks and duration are shown in
Fig. 2.

In block 1, block 2, and block 3, where the cognitive
workload was made, multiple-choice and mentally solvable
questions were asked. The difficulty levels of the questions
are adjusted as equally as possible for block 1, block 2, and
block 3. A–B–C–D options were selected, and labels were
attached to the A–S–D–F keys on the keyboard, respec-
tively, and these options were brought side by side to create
fewer artifacts. The paradigm created within the scope of
the study is shown in Fig. 3.

2.2 EEG recording

Experiments were conducted with a total of eight partici-
pants, five males (mean age 30±6.05) and three females
(mean age 30±5.29 years). While the sample size of eight
participants might limit broad generalizations, the depth of
individual data provides a rich foundation for understanding
the phenomena under investigation and sets a robust
precedent for subsequent larger-scale studies. Participants
do not have any visual or neurological disorders. In addi-
tion, all participants are right-handed. None of the partici-
pants had participated in a similar experiment before.
Karadeniz Technical University Health Sciences Institute
Ethics Committee approved data collection. All participants
signed the consent form provided by the board before the
experiment began.

EEG data were recorded using the actiCHamp (Brain
Products GmbH, Gilching, Germany) device, using elec-
trodes placed in 32 channels according to the international
10–20 standard. The sampling frequency was determined as
250 Hz, and the data were recorded using the 'Fz’ reference
electrode and the ground electrode in the forehead region.
During the experiments, the conductivity-enhancing gel was
used so that the impedances of all electrodes were below 5
kΩ. The electrode array used for data acquisition is shown
in Fig. 4.

It is assumed that the participants did not use any neu-
rological drugs based on their own statements, strictly fol-
lowed the given task, focused on the subject, and adhered to
the experimental rules.

2.3 Preprocessing

In the preprocessing stage, five different band-pass filters
were applied to the EEG data obtained from the partici-
pants, namely 0.1–4 Hz delta (D), 4–8 Hz theta (T), 8–13
Hz alpha (A), 13–30 Hz beta (B), and 30–100 Hz gamma
(G). This way, the effect of different band components on
classification was investigated.

Within the scope of the study, a fourth-order Butterworth
infinite impulse response (IIR) bandpass filter [22, 23] was
used. The input and output signals to the filter are related to
the convolution sum.

y nð Þ ¼
X1
k¼0

h kð Þx n� kð Þ ð1Þ

In equation x nð Þ, y nð Þ and h nð Þ represent the unit impulse
response of the input, output, and filter, respectively, and N
represents the degree of the filter.

In practice, it is impossible to calculate the IIR filter's
output as in Eq. (1) because the length of the pulse response
is very long (in theory, infinite). Instead, the IIR filtering
equation is expressed recursively.

Presenta�on 
Cogni�ve 

Task at 
Screen

EEG 
Recording Preprocessing

Divide 
into 

Blocks

Feature 
Extrac�on Classifica�on

Fig. 1 Flowchart of the proposed method

Fig. 2 Blocks in the experiment
and their duration
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y nð Þ ¼
X1
k¼0

h kð Þx n� kð Þ

¼
XN
k¼0

b kð Þx n� kð Þ þ
XM
k¼0

a kð Þx n� kð Þ ð2Þ

Here ak and bk show the filter coefficients.
Butterworth, one of the IIR filter types, was used in the

band-pass filter design. The transfer function of the filter;

B xð Þ ¼ 1

1þ x
x0

� �2n� �1=2 ð3Þ

Here n is the order of the filter, and w is the angular
frequency.

2.4 Splitting into blocks

In the blocking stage, each of the data that was separated
into different frequency components in the preprocessing
step was divided into block 1, block 2 and block 3 groups.
(It is worthwhile mentioning that block 0 was not consid-
ered in the feature extraction and classification process.).
The connections between the computer where the stimulus
presentation is made, the computer where the data are
recorded, and the EEG device are shown in Fig. 5. The
trigger information (stimulus; S1, S2, S3, Etc.) about which
block started on the computer where the stimulus presen-
tation is made is sent to the EEG device with a delay of 1
ms via the parallel port. The brain's electrical activity comes
from the electrodes, and this trigger information is com-
bined in the EEG device and sent to the recording computer
in a time-locked manner.

At the beginning of the rest block, the ‘S1’ trigger signal
and the ‘S2’ trigger signal at the end are sent to the EEG
device from the parallel port. Similarly, trigger marks ‘S3’
and 'S4’ for the start and end of block 1, trigger marks ‘S5’

Fig. 3 The paradigm created for the detection of cognitive fatigue

Fig. 4 Arrangement of the electrodes used in data acquisition
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and 'S6’ for the start and end of block 2, and finally, ‘S7’
and ‘S8’ trigger signals are sent for the start and end of
block 3, respectively.

2.5 Feature extraction

The spectrogram method was used to obtain time–fre-
quency signal separation.

Ef ¼
X
t

X f ; tð Þj j2 ð4Þ

Here, X f ; tð Þ represents the time–frequency representa-
tion of the original x tð Þ signal and the energy margins in the
Ef frequency domain. The band power is denoted by EB and
is obtained by summing the energy margins in the band and
is calculated as shown in the equation below.

EB ¼
X
f 2B

Ef ð5Þ

In the study, the blocks with the workload were com-
pared. Accordingly, binary classification operations were
carried out in block 1 and block 2, where single tasks were
performed, and in block 3 where multitasking was per-
formed. For example, the classification process was per-
formed to compare block 1 and block 3 with the band power
features extracted from the delta frequency band and the
0.25 s long EEG segments. For this purpose, the single task
and multitasking block in the same length and frequency
band were brought together to form the data set to be
classified.

2.6 Classification

For classification purpose, a data matrix of size Dx32 and a
label matrix of size Dx1 each are brought together. Here, D

varies according to the length of the EEG piece used. For
example, when EEG pieces of 1 s are used, 300 pieces of
EEG are obtained because the blocks take 5 min, that is,
300 s. Since 300 samples come from single-task blocks
(block 1 or block 2) and 300 samples come from multi-
tasking blocks (block 3), D=600 here. Similarly, when the
EEG length is 3 and 5 s, D equals 200 and 120, respectively.

The classification was carried out with artificial neural
networks (ANN) classification algorithm using the data set
obtained depending on the EEG segment length and fre-
quency component. N feature vectors were randomly divi-
ded into three parts, each time as 50% training, 25%
validation, and 25% testing, and the classification process
was repeated 50 times in total. The results section shows the
average test accuracies obtained as a result of the classifi-
cation process repeated 50 times.

A two-layer ANN model with one output neuron and one
hidden layer was used in the classification step. The ANN
model is shown below.

ŷ ¼ ~g
XM
j¼1

w 2ð Þ
1j � g

Xd
i¼1

w 1ð Þ
ji � xi þ w 1ð Þ

j0

 !
þ w 2ð Þ

11

 !
ð6Þ

Here ðxiÞ is the ith input, ðw kð Þ
ji Þ is the layer weight

between the ith neuron and the jth neuron in the kth layer,

gð Þ is the tangent sigmoid function, and fgð Þ is the linear
function. Also, dð Þ represents the size of the input vector.
Total error for the entire data set;

J wð Þ ¼ � 1

N

XN
n¼1

ynlogŷn þ 1� ynð Þlog 1� ŷnð Þ½ � ð7Þ

Here Nð Þ represents the total number of samples in the
signal, ðŷlÞ is the estimated value calculated by the neural

Fig. 5 The experimental setup
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network model, and ðylÞ is the actual label value of the
sample. The created ANN model is shown in Fig. 6.

In the study, support vector machine (SVM) and linear
discriminant analysis (LDA) were also used for comparison
purposes. Since these methods are widely known and not in
the proposed method, their detailed explanation is not given
here.

Artificial Neural Network (ANN): After numerous con-
figurations and preliminary tests, our optimal ANN model
comprises a specific number of hidden layers, neurons in
each layer, a learning rate of 0.01, a Rectified Linear Unit
(ReLU) activation function, and a maximum of 50 epochs.

Linear Discriminant Analysis (LDA): Our selection of
the 'Linear’ discriminant type was grounded in its efficacy
during our preliminary tests.

Support Vector Machine (SVM): The 'Linear’ kernel was
favored due to its robust performance for our dataset.
Additionally, the box constraint was set at 1, and the kernel
scale parameter was also determined to be 1 after compre-
hensive trials. Our aim in detailing these parameters is to
ensure transparency in our methodologies and to highlight
the thoroughness in our experimental design.

3 Results

Within the scope of the study, EEG data of block 1-block 2
with single task and block 3 with multitasking were clas-
sified using different frequency bands and EEG signals of
different lengths. For this purpose, block 1-block 3 and
block 2-block 3 EEG data for all individuals separately in
delta (D), theta (T), alpha (A), beta (B), and gamma
(G) frequency bands 1, 3, and CA was obtained using 5-s
EEG segments and is shown in Figs. 7 and 8. As seen from
the figures, the first column contains block 1-block 3, the

second column contains block 2-block 3, and the rows
contain the CA results of the individuals.

CA results are given using radar charts. Radar charts are
a type of chart used to show the effects of different fre-
quency bands and EEG signals of different lengths on CA at
the same time. The effects of D, T, A, B, and G frequency
bands on the diagonals and the 1, 3, and 5-s (s) EEG signal
lengths on the CA are seen on the inner lines of the radar
charts. The CAs of 1-s EEG lengths are shown with green
dots, and the CAs of 3 and 5-s EEG lengths are shown with
blue dashed and solid red lines, respectively. In radar charts,
the CA level starts from 50%, increases 10 by 10, and
reaches 100%.

Figures 7 and 8 show that the gamma band is the most
effective frequency band in both block 1-block 3 classifi-
cations and block 2-block 3 classifications. This situation is
compatible with the literature. Studies have shown that as
the cognitive workload increases, there is an increase in
activation in EEG oscillations, especially in the gamma
band [24, 25]. After the gamma band, the highest CA is
obtained by using the beta band. The lowest CA is obtained
by using the delta frequency band. According to the results
obtained, it is seen that the use of 5-s EEG segments
increases the classification performance.

Average classification accuracies and standard deviation
values for all subjects shown in Table 1 were obtained by
averaging the CAs in Figs. 7 and 8. When the mean values
are examined, a more general interpretation can be made. In
this context, it is seen that the gamma frequency band is the
most effective frequency range in both block 1-block 3 and
block 2-block 3 CAs. The worst CA was obtained with
59.84% accuracy using the delta frequency band and 1s
EEG segment. Considering EEG lengths, the highest CA is
obtained with 91.88% accuracy using 5-s EEG segments
and the gamma frequency band. The most valuable infor-
mation obtained from the mean values shown in Table 1 is
that block 1-block 3 CAs are higher than block 2-block 3
CAs. Accordingly, since the person was less tired at the
beginning of block 1, higher CA was obtained compared to
block 3. As the process progressed, cognitive fatigue
increased, so the CA obtained from the comparison of block
2 and block 3 was lower than the CA obtained from the
comparison of block 1 and block 3. The participant count
was determined based on the literature, and the consistency
of the results was proved by the standard deviation values
for classification accuracies, as displayed in Table 1. The
table indicates that the standard deviation values are satis-
factorily low.

The classification was done with different features and
algorithms using 5-s EEG segments and gamma frequency
bands. For this purpose, classification results were obtained
by ANN, SVM, and LDA algorithms using skewness,

Fig. 6 Artificial neural network model
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Fig. 7 Classification accuracies for subject 1, 2, 3 and 4
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Fig. 8 Classification accuracies for subject 5, 6, 7 and 8
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kurtosis, root mean square statistical features, band power,
and higher-order spectral features and are shown in Table 2.

4 Conclusion and discussion

The most EEG-based cognitive fatigue detection studies
either looked at the effect of different test types on creating
cognitive workload or looked at the workload level of
multitasking. There are some EEG based approaches which
required attention and focusing ability such as brain-com-
puter interface, decision making and problem solving.
While one of the important reasons of poor performance of
such studies is attention and focusing, it could not be easily
detected since it highly depends on mental workload of the
user. Considering that the issue of multitasking cognitive
fatigue has not been directly studied in the literature, it can
be said that the main novelty of our work has great potential
to reveal multitasking cognitive fatigue using only a 5-s
EEG length of gamma frequency. In other words, in this
study, unlike the literature, how single and multitasking
tests affect cognitive workload was investigated and clas-
sified. In this context, single-task and multitask tests were
made, and the classification process was carried out. Clas-
sification processes are discussed in terms of both different
frequency bands and different EEG lengths. According to
the results obtained, single-task and multitask EEG signals
were separated from each other with the highest classifica-
tion accuracy using the gamma frequency band. The most
effective EEG length was determined as 5 s. The classifi-
cation accuracy obtained in the first single task (block 1)
and multitasking (block 3) comparison is higher than in the
second single task (block 2) and multitasking comparison.

This is because the person gets more and more tired as time
progresses. Using the proposed method, the highest CA in
block 1–block 3 comparisons were obtained in the gamma
frequency band using a 5-s EEG segment with an accuracy
of 97.11%. Again, in the comparison of block 2–block 3,
the highest CA was obtained in the gamma frequency band
with an accuracy of 90.88% using a 5-s EEG segment.
Within the scope of the study, single-task and multitasking
were considered as binary classification problems and were
distinguished by their high classification accuracy. This will
be useful to determine whether the person is focusing on a
single task or multi-tasking. In such detection, it can be used
in systems such as the brain-computer interface, where the
person is asked to focus on a single target to determine
whether the person is focused or not. It can also be used to
determine whether people have an attention deficit.

The most EEG-based cognitive fatigue detection studies
primarily focus on the effect of different test types on cre-
ating cognitive workload or examine the workload level of
multitasking. Our work fills a gap in the literature by
exploring the impact of both single and multitasking tests
on cognitive workload. Specifically, we examined and
classified the differences between these two types of tasks.
Unique to our study, we analyzed single-task and multitask
tests, undertaking classification processes across varied
frequency bands and EEG lengths.

According to our findings, single-task and multitask EEG
signals were most distinctly differentiated using the gamma
frequency band. Notably, the optimal EEG segment length
was 5 s. A possible explanation for higher classification
accuracy in the first single task (block 1) compared to the
second single task (block 2) is the progressive cognitive
fatigue experienced by the subject over time. Using our
method, we achieved an impressive classification accuracy
of 97.11% in Block 1—block 3 comparisons, while the
comparison of block 2—block 3 yielded an accuracy of
90.88%, both utilizing the gamma frequency band over a
5-s EEG segment.

These results not only provide insights into the distinct
neural patterns underlying single-tasking versus multitask-
ing but also hold potential practical implications. Our
findings underscore the importance of considering task type
and progression when assessing cognitive fatigue and

Table 1 Average CAs obtained
for all persons

Block 1 vs Block 3 Block 2 vs Block 3

1 s 3 s 5 s 1 s 3 s 5 s

D 63.7 ± 44.28 64.81 ± 6.83 63.64 ± 8.71 60.47 ± 4.36 60.53 ± 7.03 59.84 ± 9.28

T 82.65 ± 3.25 87.20 ± 4.18 89.64 ± 4.47 77.94 ± 3.63 82.82 ± 4.92 83.69 ± 6.42

A 86.53 ± 2.61 90.72 ± 3.43 91.13 ± 4.44 77.85 ± 3.45 83.32 ± 4.46 84.78 ± 6.29

B 92.70 ± 2.09 95.09 ± 2.72 94.93 ± 3.34 87.35 ± 2.65 90.91 ± 3.47 91.10 ± 4.34

G 95.56 ± 1.13 96.84 ± 1.61 97.11 ± 2.11 89.38 ± 2.38 90.71 ± 3.90 91.88±4.29

Table 2 Accuracies of different features and classifiers

Statistical features Band power Higher-order spectral

ANN 85.30 91.88 88.47

LDA 81.11 86.34 87.29

SVM 86.12 90.12 89.91
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workload using EEG. The high classification accuracy
supports the potential application of our method in real-
world scenarios, such as brain-computer interfaces where
task focus is critical. Furthermore, these results can be
instrumental in designing interventions for individuals with
attention deficits or for settings where rapid task-switching
is required. Future research could delve deeper into under-
standing the neural mechanisms driving these differences
and explore the scalability of our method across diverse
populations and tasks.

As future work, we intend to improve CA performance in
two ways. One of them is applying different kinds of pre-
processing techniques, including normalization and princi-
pal component analysis methods. Secondly, we aim to
improve the proposed method to find subject-dependent
filter frequencies, which will provide specific filter for each
participant. Moreover, we want to test the proposed method
with other kinds of EEG equipment including wireless EEG
sensors and different machine learning algorithms including
k-nearest neighbor and decision tree. In addition to CA
metric, we will apply polygon area metric (PAM) [26],
which is a new, simple and effective promising technique
for the evaluation of the performance of classifiers in
machine learning applications.

Acknowledgements The data used in this study were recorded at
Atatürk University Sports Sciences Application and Research Center.
This study was supported by the Inter Computer Electronics Ltd. and
Brain Products GmbH.

Funding Open access funding provided by the Scientific and Tech-
nological Research Council of Türkiye (TÜBİTAK).

Data availability The dataset supporting the conclusions of this article
is available in the Kaggle public repository https://www.kaggle.com/
datasets/onurerdemkorkmaz/multi-task-mental-workload-eeg-dataset

Declarations

Conflict of interest The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Khurtin I, Prasad M, Redozubov A (2022) Brain Inspired Con-
textual Model for Visual Information Processing. https://doi.org/
10.2139/ssrn.4240434

2. Yuste R, Church M (2014) The new century of the brain. Sci Am
310:38–45

3. Eghtedari F, Haddadnia J (2013) Improving the Performance of
the Atlas Base Methods in Segmentation of the White Matter in
Brain MR Images of the MS Patients, 2:13–17

4. Tang X, Shen H, Zhao S, Li N, Liu J (2023) Flexible brain–
computer interfaces. Nat Electron 6(2):109–118

5. Chaudhuri A, Behan PO (2004) Fatigue in neurological disorders.
The Lancet 363(9413):978–988

6. Wang Y, Huang Y, Gu B, Cao S, Fang D (2023) Identifying
mental fatigue of construction workers using EEG and deep
learning. Autom Constr 151:104887

7. Calmels C et al (2003) Competitive strategies among elite female
gymnasts: an exploration of the relative influence of psychological
skills training and natural learning experiences. Int J Sport Exerc
Psychol 1(4):327–352

8. Habay J, Uylenbroeck R, Van Droogenbroeck R, De Wachter J,
Proost M, Tassignon B, Roelands B (2023) Interindividual vari-
ability in mental fatigue-related impairments in endurance per-
formance: a systematic review and multiple meta-regression.
Sports Med-open 9(1):1–27

9. Dehais F et al (2020) A neuroergonomics approach to measure
pilot’s cognitive incapacitation in the real world with EEG. In:
International conference on applied human factors and ergo-
nomics. Springer

10. Trejo LJ et al (2007) EEG-based estimation of mental fatigue:
convergent evidence for a three-state model. In: International
conference on foundations of augmented cognition

11. Sun Y et al (2014) Discriminative analysis of brain functional
connectivity patterns for mental fatigue classification. Ann
Biomed Eng 42(10):2084–2094

12. Papakostas M, Rajavenkatanarayanan A, Makedon F (2019)
Cogbeacon: a multi-modal dataset and data-collection platform for
modeling cognitive fatigue. Technologies 7(2):46

13. Chai R et al (2015) Comparing features extractors in EEG-based
cognitive fatigue detection of demanding computer tasks. In: 2015
37th annual international conference of the IEEE engineering in
medicine and biology society (EMBC). IEEE

14. Peng Y et al (2022) Functional connectivity analysis and detection
of mental fatigue induced by different tasks using functional near-
infrared spectroscopy. Front Neurosci 15:771056

15. Lim W, Sourina O, Wang LP (2018) STEW: simultaneous task
EEG workload data set. IEEE Trans Neural Syst Rehab Eng 26
(11):2106–2114

16. Bratfisch O, Hagman E (2008) SIMKAP-simultankapazität/multi-
tasking. Schuhfried GmbH, Mödling

17. Ahmad A et al (2016) Human error in multitasking environments.
In: Proc. int. conf. ind. eng. oper. manage

18. Bühner M et al (2006) Working memory dimensions as differ-
ential predictors of the speed and error aspect of multitasking
performance. Hum Perform 19(3):253–275

19. Li Y, Shiu J (2016) A normative study of cognitive ability tests in
Chinese-speaking student pilots. 中華民國航空醫學暨科學期刊.
30(1):33–44

20. Karim E, Pavel HR, Jaiswal A, Zadeh MZ, Theofanidis M, Wylie
G, Makedon F (2023) An EEG-based cognitive fatigue detection

Neural Computing and Applications

123

https://www.kaggle.com/datasets/onurerdemkorkmaz/multi-task-mental-workload-eeg-dataset
https://www.kaggle.com/datasets/onurerdemkorkmaz/multi-task-mental-workload-eeg-dataset
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2139/ssrn.4240434
https://doi.org/10.2139/ssrn.4240434


system. In: Proceedings of the 16th international conference on
pervasive technologies related to assistive environments, pp 131–
136

21. Gao D et al (2023) CSF-GTNet: A novel multi-dimensional fea-
ture fusion network based on Convnext-GeLU-BiLSTM for EEG-
signals-enabled fatigue driving detection. In: IEEE Journal of
Biomedical and Health Informatics, pp. 1–12. https://doi.org/10.
1109/JBHI.2023.3240891

22. Alarcon G, Guy CN, Binnie CD (2000) A simple algorithm for a
digital three-pole Butterworth filter of arbitrary cut-off frequency:
application to digital electroencephalography. J Neurosci Methods
104(1):35–44

23. Sen D, Mishra BB, Pattnaik PK (2023) A review of the filtering
techniques used in EEG signal processing. In: 2023 7th

international conference on trends in electronics and informatics
(ICOEI). IEEE, pp 270–277

24. Lorist MM et al (2009) The influence of mental fatigue and
motivation on neural network dynamics; an EEG coherence study.
Brain Res 1270:95–106

25. Pokryszko-Dragan A et al (2012) Stimulated peripheral produc-
tion of interferon-gamma is related to fatigue and depression in
multiple sclerosis. Clin Neurol Neurosurg 114(8):1153–1158

26. Aydemir O (2021) A new performance evaluation metric for
classifiers: polygon area metric. J Classif 38:16–26

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1109/JBHI.2023.3240891
https://doi.org/10.1109/JBHI.2023.3240891

	Detection of multitask mental workload using gamma band power features
	Abstract
	Introduction
	Materials and methods
	Paradigm
	EEG recording
	Preprocessing
	Splitting into blocks
	Feature extraction
	Classification

	Results
	Conclusion and discussion
	Data availability
	References


